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Constructive Solid Geometry

Constructive Solid 
Geometry (CSG) builds 
complicated forms out of 
simple primitives.

These primitives are 
combined with basic 
boolean operations: add, 
subtract, intersect.

CSG figure by Neil Dodgson



Constructive Solid Geometry

CSG models are easy to ray-trace but difficult to 
polygonalize
● Issues include choosing polygon boundaries at edges; 

converting adequately from pure smooth primitives to 
discrete (flat) faces; handling ‘infinitely thin’ sheet 
surfaces; and others.

● This is an ongoing research topic.
CSG models are well-suited to machine milling, automated 
manufacture, etc
● Great for 3D printers!



Constructive Solid Geometry

CSG surfaces can be described by a binary 
tree, where each leaf node is a primitive and 
each non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4



Constructive Solid Geometry

Three operations:
1. Union   2. Intersection      3. Difference



For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points 

where r enters of leaves A or B.
● You can think of each intersection as 

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t 
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

Constructive Solid Geometry



Ray-tracing CSG models

Each boolean operation can 
be modeled as a state 
machine.
For each operation, retain 
those intersections that 
transition into or out of
the critical state(s).
● Union: 

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and 
B

In A In B

Not in A 
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A



Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B  Was In A  Is In A  Was In B  Is In B

 t1  No  Yes  No  No

 t2  Yes  Yes  No  Yes

 t3  Yes  No  Yes  Yes

 t4  No  No  Yes  No

difference = 
((wasInA != isInA) &&
 (!isInB)&&(!wasInB)) 
|| 
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models



Difference Intersection

CSG in action



What’s wrong with raytracing?
● Soft shadows are expensive
● Shadows of transparent objects require 

further coding or hacks
● Lighting off reflective objects follows 

different shadow rules from normal lighting
● Hard to implement diffuse reflection (color 

bleeding, such as in the Cornell Box—
notice how the sides of the inner cubes are 
shaded red and green.)

● Fundamentally, the ambient term is a hack 
and the diffuse term is only one step in 
what should be a recursive, self-reinforcing 
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University 
in 1984 by Don Greenberg.  An actual box 
is built and photographed; an identical 
scene is then rendered in software and the 
two images are compared.



Radiosity
● Radiosity is an illumination method 

which simulates the global 
dispersion and reflection of diffuse 
light.
● First developed for describing spectral 

heat transfer (1950s)
● Adapted to graphics in the 1980s at 

Cornell University
● Radiosity is a finite-element 

approach to global illumination: it 
breaks the scene into many small 
elements (‘patches’) and calculates 
the energy transfer between them.

Images from Cornell University’s graphics group 
http://www.graphics.cornell.edu/online/research/ 



Radiosity—algorithm
● Surfaces in the scene are divided into form factors (also called 

patches), small subsections of each polygon or object.
● For every pair of form factors A, B, compute a view factor describing 

how much energy from patch A reaches patch B.
● The further apart two patches are in space or orientation, the less light 

they shed on each other, giving lower view factors.
● Calculate the lighting of all directly-lit patches.
● Bounce the light from all lit patches to all those they light, carrying 

more light to patches with higher relative view factors.  Repeating 
this step will distribute the total light across the scene, producing a 
total illumination model.



Radiosity—mathematical support
The ‘radiosity’ of a single patch is the amount of energy leaving 
the patch per discrete time interval.
This energy is the total light being emitted directly from the patch 
combined with the total light being reflected by the patch:

where…
Bi is the radiosity of patch i; 
Bj is the cumulative radiosity of all other patches (j≠i)
Ei is the emitted energy of the patch
Ri is the reflectivity of the patch
Fij is the view factor of energy from patch i to patch j.



Radiosity—form factors
● Finding form factors can be done 

procedurally or dynamically
● Can subdivide every surface into small 

patches of similar size
● Can dynamically subdivide wherever the 1st 

derivative of calculated intensity rises above 
some threshold.

● Computing cost for a general radiosity 
solution goes up as the square of the number 
of patches, so try to keep patches down.
● Subdividing a large flat white wall could be 

a waste.
● Patches should ideally closely align with 

lines of shadow.



Radiosity—implementation
(A) Simple patch triangulation
(B) Adaptive patch generation: the floor 

and walls of the room are dynamically 
subdivided to produce more patches 
where shadow detail is higher.

Images from “Automatic
generation of node spacing 
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/nspE.
htm 

(A) (B)



Radiosity—view factors
One equation for the view factor between 
patches i, j is:

…where θi is the angle between the normal of 
patch i and the line to patch j, r is the distance 
and V(i,j) is the visibility from i to j (0 for 
occluded, 1 for clear line of sight.) High view factor

Low view factor

θi

θj



Radiosity—calculating visibility
● Calculating V(i,j) can be slow.
● One method is the hemicube, in which each form factor is encased in a 

half-cube.  The scene is then ‘rendered’ from the point of view of the 
patch, through the walls of the hemicube; V(i,j) is computed for each 
patch based on which patches it can see (and at what percentage) in its 
hemicube.

● A purer method, but more computationally expensive, uses 
hemispheres.

Note: This method can be accelerated 
using modern graphics hardware to 
render the scene.  The scene is 
‘rendered’ with flat lighting, setting the 
‘color’ of each object to be a pointer to 
the object in memory.



Radiosity gallery

Teapot (wikipedia)

Image from 
GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation: 
a Synthesis of Ray Tracing and Radiosity Methods, 
John R. Wallace, Michael F. Cohen and Donald P. Greenberg 
(Cornell University, 1987)



Shadows, refraction and caustics
● Problem: shadow ray strikes 

transparent, refractive object.  
● Refracted shadow ray will 

now miss the light.
● This destroys the validity of 

the boolean shadow test.
● Problem: light passing through 

a refractive object will 
sometimes form caustics (right), 
artifacts where the envelope of 
a collection of rays falling on 
the surface is bright enough to 
be visible.

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and 
outside of its shadow.
Photo credit: Jan Zankowski



Shadows, refraction and caustics

● Solutions for shadows of transparent 
objects:
● Backwards ray tracing (Arvo)

● Very computationally heavy
● Improved by stencil mapping (Shenya et al)

● Shadow attenuation (Pierce)
● Low refraction, no caustics

● More general solution:
● Photon mapping (Jensen)→

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping



Photon mapping
Photon mapping is the process 
of emitting photons into a 
scene and tracing their paths 
probabilistically to build a 
photon map, a data structure 
which describes the 
illumination of the scene 
independently of its geometry. 

This data is then combined 
with ray tracing to compute the 
global illumination of the 
scene.

Image by Henrik Jensen (2000)



Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:
1.  Photon scattering

A. Photons are fired from each light source, scattered in 
randomly-chosen directions.  The number of photons per 
light is a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer, 
folks.)  Where they strike a surface they are either 
absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction 
and energy of the photon in the photon map.  The photon 
map data structure must support fast insertion and fast 
nearest-neighbor lookup; a kd-tree1 is often used.

Image by Zack Waters



Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:
2.  Rendering

A. Ray trace the scene from the point of view of the camera.
B. For each first contact point P use the ray tracer for 

specular but compute diffuse from the photon map and do 
away with ambient completely.

C. Compute radiant illumination by summing the 
contribution along the eye ray of all photons within a 
sphere of radius r of P.

D. Caustics can be calculated directly here from the photon 
map.  For speed, the caustic map is usually distinct from 
the radiance map.

Image by Zack Waters



Photon mapping is probabilistic
This method is a great example of 
Monte Carlo integration, in which a 
difficult integral (the lighting 
equation) is simulated by randomly 
sampling values from within the 
integral’s domain until enough 
samples average out to about the 
right answer.
● This means that you’re going to be 

firing millions of photons.  Your 
data structure is going to have to be 
very space-efficient.

http://www.okino.com/conv/imp_jt.
htm



Photon mapping is probabilistic
● Initial photon direction is random.  Constrained by light 

shape, but random.
● What exactly happens each time a photon hits a solid also 

has a random component:
● Based on the diffuse reflectance, specular reflectance and 

transparency of the surface, compute probabilities pd, ps and pt where (pd+ps+pt)≤1.  This gives a probability map:

● Choose a random value p є [0,1].  Where p falls in the 
probability map of the surface determines whether the photon is 
reflected, refracted or absorbed.

0 1pd ps pt
This surface would 
have minimal 
specular highlight.



Photon mapping gallery

http://www.pbrt.org/gallery.php
http://web.cs.wpi.
edu/~emmanuel/courses/cs563/write_ups/zackw/phot
on_mapping/PhotonMapping.html 

http://graphics.ucsd.edu/~henrik/images/global.html 
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