
Advanced Scenes and Global Illumination
Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Advanced Graphics

Constructive Solid Geometry

Constructive Solid
Geometry (CSG) builds
complicated forms out of
simple primitives.

These primitives are
combined with basic
boolean operations: add,
subtract, intersect.

CSG figure by Neil Dodgson

Constructive Solid Geometry

CSG models are easy to ray-trace but difficult to
polygonalize
● Issues include choosing polygon boundaries at edges;

converting adequately from pure smooth primitives to
discrete (flat) faces; handling ‘infinitely thin’ sheet
surfaces; and others.

● This is an ongoing research topic.
CSG models are well-suited to machine milling, automated
manufacture, etc
● Great for 3D printers!

Constructive Solid Geometry

CSG surfaces can be described by a binary
tree, where each leaf node is a primitive and
each non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4

Constructive Solid Geometry

Three operations:
1. Union 2. Intersection 3. Difference

For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points

where r enters of leaves A or B.
● You can think of each intersection as

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

Constructive Solid Geometry

Ray-tracing CSG models

Each boolean operation can
be modeled as a state
machine.
For each operation, retain
those intersections that
transition into or out of
the critical state(s).
● Union:

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and
B

In A In B

Not in A
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A

Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B Was In A Is In A Was In B Is In B

 t1 No Yes No No

 t2 Yes Yes No Yes

 t3 Yes No Yes Yes

 t4 No No Yes No

difference =
((wasInA != isInA) &&
 (!isInB)&&(!wasInB))
||
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models

Difference Intersection

CSG in action

What’s wrong with raytracing?
● Soft shadows are expensive
● Shadows of transparent objects require

further coding or hacks
● Lighting off reflective objects follows

different shadow rules from normal lighting
● Hard to implement diffuse reflection (color

bleeding, such as in the Cornell Box—
notice how the sides of the inner cubes are
shaded red and green.)

● Fundamentally, the ambient term is a hack
and the diffuse term is only one step in
what should be a recursive, self-reinforcing
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University
in 1984 by Don Greenberg. An actual box
is built and photographed; an identical
scene is then rendered in software and the
two images are compared.

Radiosity
● Radiosity is an illumination method

which simulates the global
dispersion and reflection of diffuse
light.
● First developed for describing spectral

heat transfer (1950s)
● Adapted to graphics in the 1980s at

Cornell University
● Radiosity is a finite-element

approach to global illumination: it
breaks the scene into many small
elements (‘patches’) and calculates
the energy transfer between them.

Images from Cornell University’s graphics group
http://www.graphics.cornell.edu/online/research/

Radiosity—algorithm
● Surfaces in the scene are divided into form factors (also called

patches), small subsections of each polygon or object.
● For every pair of form factors A, B, compute a view factor describing

how much energy from patch A reaches patch B.
● The further apart two patches are in space or orientation, the less light

they shed on each other, giving lower view factors.
● Calculate the lighting of all directly-lit patches.
● Bounce the light from all lit patches to all those they light, carrying

more light to patches with higher relative view factors. Repeating
this step will distribute the total light across the scene, producing a
total illumination model.

Radiosity—mathematical support
The ‘radiosity’ of a single patch is the amount of energy leaving
the patch per discrete time interval.
This energy is the total light being emitted directly from the patch
combined with the total light being reflected by the patch:

where…
Bi is the radiosity of patch i;
Bj is the cumulative radiosity of all other patches (j≠i)
Ei is the emitted energy of the patch
Ri is the reflectivity of the patch
Fij is the view factor of energy from patch i to patch j.

Radiosity—form factors
● Finding form factors can be done

procedurally or dynamically
● Can subdivide every surface into small

patches of similar size
● Can dynamically subdivide wherever the 1st

derivative of calculated intensity rises above
some threshold.

● Computing cost for a general radiosity
solution goes up as the square of the number
of patches, so try to keep patches down.
● Subdividing a large flat white wall could be

a waste.
● Patches should ideally closely align with

lines of shadow.

Radiosity—implementation
(A) Simple patch triangulation
(B) Adaptive patch generation: the floor

and walls of the room are dynamically
subdivided to produce more patches
where shadow detail is higher.

Images from “Automatic
generation of node spacing
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/nspE.
htm

(A) (B)

Radiosity—view factors
One equation for the view factor between
patches i, j is:

…where θi is the angle between the normal of
patch i and the line to patch j, r is the distance
and V(i,j) is the visibility from i to j (0 for
occluded, 1 for clear line of sight.) High view factor

Low view factor

θi

θj

Radiosity—calculating visibility
● Calculating V(i,j) can be slow.
● One method is the hemicube, in which each form factor is encased in a

half-cube. The scene is then ‘rendered’ from the point of view of the
patch, through the walls of the hemicube; V(i,j) is computed for each
patch based on which patches it can see (and at what percentage) in its
hemicube.

● A purer method, but more computationally expensive, uses
hemispheres.

Note: This method can be accelerated
using modern graphics hardware to
render the scene. The scene is
‘rendered’ with flat lighting, setting the
‘color’ of each object to be a pointer to
the object in memory.

Radiosity gallery

Teapot (wikipedia)

Image from
GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation:
a Synthesis of Ray Tracing and Radiosity Methods,
John R. Wallace, Michael F. Cohen and Donald P. Greenberg
(Cornell University, 1987)

Shadows, refraction and caustics
● Problem: shadow ray strikes

transparent, refractive object.
● Refracted shadow ray will

now miss the light.
● This destroys the validity of

the boolean shadow test.
● Problem: light passing through

a refractive object will
sometimes form caustics (right),
artifacts where the envelope of
a collection of rays falling on
the surface is bright enough to
be visible.

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and
outside of its shadow.
Photo credit: Jan Zankowski

Shadows, refraction and caustics

● Solutions for shadows of transparent
objects:
● Backwards ray tracing (Arvo)

● Very computationally heavy
● Improved by stencil mapping (Shenya et al)

● Shadow attenuation (Pierce)
● Low refraction, no caustics

● More general solution:
● Photon mapping (Jensen)→

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping

Photon mapping
Photon mapping is the process
of emitting photons into a
scene and tracing their paths
probabilistically to build a
photon map, a data structure
which describes the
illumination of the scene
independently of its geometry.

This data is then combined
with ray tracing to compute the
global illumination of the
scene.

Image by Henrik Jensen (2000)

Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:
1. Photon scattering

A. Photons are fired from each light source, scattered in
randomly-chosen directions. The number of photons per
light is a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer,
folks.) Where they strike a surface they are either
absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction
and energy of the photon in the photon map. The photon
map data structure must support fast insertion and fast
nearest-neighbor lookup; a kd-tree1 is often used.

Image by Zack Waters

Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:
2. Rendering

A. Ray trace the scene from the point of view of the camera.
B. For each first contact point P use the ray tracer for

specular but compute diffuse from the photon map and do
away with ambient completely.

C. Compute radiant illumination by summing the
contribution along the eye ray of all photons within a
sphere of radius r of P.

D. Caustics can be calculated directly here from the photon
map. For speed, the caustic map is usually distinct from
the radiance map.

Image by Zack Waters

Photon mapping is probabilistic
This method is a great example of
Monte Carlo integration, in which a
difficult integral (the lighting
equation) is simulated by randomly
sampling values from within the
integral’s domain until enough
samples average out to about the
right answer.
● This means that you’re going to be

firing millions of photons. Your
data structure is going to have to be
very space-efficient.

http://www.okino.com/conv/imp_jt.
htm

Photon mapping is probabilistic
● Initial photon direction is random. Constrained by light

shape, but random.
● What exactly happens each time a photon hits a solid also

has a random component:
● Based on the diffuse reflectance, specular reflectance and

transparency of the surface, compute probabilities pd, ps and pt where (pd+ps+pt)≤1. This gives a probability map:

● Choose a random value p є [0,1]. Where p falls in the
probability map of the surface determines whether the photon is
reflected, refracted or absorbed.

0 1pd ps pt
This surface would
have minimal
specular highlight.

Photon mapping gallery

http://www.pbrt.org/gallery.php
http://web.cs.wpi.
edu/~emmanuel/courses/cs563/write_ups/zackw/phot
on_mapping/PhotonMapping.html

http://graphics.ucsd.edu/~henrik/images/global.html

References
Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)
Radiosity
● nVidia: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
● Cornell: http://www.graphics.cornell.edu/online/research/
● Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, “A Ray Tracing Algorithm for

Progressive Radiosity.” In Computer Graphics (Proceedings of SIGGRAPH 89) 23(4),
pp. 315–324.

● Buss, “3-D Computer Graphics: A Mathematical Introduction with OpenGL” (Chapter
XI), Cambridge University Press (2003)

Photon mapping
● Henrik Jenson, “Global Illumination using Photon Maps”: http://graphics.ucsd.

edu/~henrik/
● Zack Waters, “Photon Mapping”: http://web.cs.wpi.

edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

